Naringenin exerts cytoprotective effect against paraquat-induced toxicity in human bronchial epithelial BEAS-2B cells through NRF2 activation.
نویسندگان
چکیده
UNLABELLED We have previously shown that paraquat (PQ)-induced oxidative stress causes dramatic damage in various human cell lines. Naringenin (NG) is an active flavanone, which has been reported to have beneficial bioactivities, including antioxidative, anti-inflammatory, and antitumorigenic activities, with a relatively low toxicity to normal cells. In this study, we intended to assess the cytoprotective effect of NG against PQ-induced toxicity in the human bronchial epithelial BEAS-2B cell line. Co-treatment with NG in PQ-treated BEAS-2B cells can reduce PQ-induced cellular toxicity. NG can also decrease the generation of intracellular ROS caused by PQ treatment. We also observed that treatment with NG in PQ-exposed BEAS-2B cells can significantly induce the expression of antioxidant-related genes, including GPX2, GPX3, GPX5, and GPX7. NG co-treatment can also activate the NRF2 transcription factor and promote its nuclear translocation. In addition, NG co-treatment can induce the expression of NRF2-downstream target genes such as that of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). A small interfering RNA study revealed that the knockdown of NRF2 can abrogate NG-mediated protection of the cells from PQ-induced cellular toxicity. We propose that NG effectively alleviates PQ-induced cytotoxicity in human bronchial epithelial BEAS-2B cells through the NRF2-regulated antioxidant defense pathway, and NG might be a good therapeutic candidate molecule in oxidative stress-related diseases.
منابع مشابه
Cytoprotective effect of alpha-lipoic acid on paraquat-exposed human bronchial epithelial cells via activation of nuclear factor erythroid related factor-2 pathway.
Alpha-lipoic acid (LA), a metabolic antioxidant, is a natural compound and its biological function has been well studied in various human diseases. The present study was designed to investigate the cytoprotective effect and the molecular mechanisms of LA in paraquat (PQ)-induced oxidative stress injury using BEAS-2B human bronchial epithelial cells. LA co-treatment prevented PQ-induced BEAS-2B ...
متن کاملResveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway.
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an antioxidant-activated transcription factor that recently emerged as a critical regulator of cellular defense against oxidative and inflammatory lesions. Resveratrol (Res) is a natural phytoalexin that exhibits multiple therapeutic potentials, including antioxidative and anti-inflammatory effects in animals. Paraquat (PQ) is the second mos...
متن کاملSulforaphane Induces Antioxidative and Antiproliferative Responses by Generating Reactive Oxygen Species in Human Bronchial Epithelial BEAS-2B Cells
Sulforaphane (SFN) is a naturally occurring compound which is known to induce the phase II antioxidant genes via Nrf2 activation, although the underlying mechanism has not been fully elucidated. In this study, we investigated Nrf2 induction in response to SFN in human bronchial epithelial BEAS-2B cells and determined the signaling pathways involved in this process. SFN treatment reduced cell vi...
متن کاملCytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC.
Mucins are highly glycosylated secretary proteins produced by most epithelial cells. Hypersecretion of mucins is one of the prominent symptoms of several airway diseases, including asthma, cystic fibrosis, nasal allergy, rhinitis, and sinusitis. Paraquat (PQ), a common herbicide, has been associated with pulmonary damage and is a potent reactive oxygen species (ROS) producer. However, until now...
متن کاملRetinoic acid inhibits elastase-induced injury in human lung epithelial cell lines.
The protective effects of retinoic acid on elastase-induced lung epithelial cell injury were studied using elastase extracted from purulent human sputum, the BEAS-2B human bronchial epithelial cell line, A549 human type II lung cell line, and primary cultures of human tracheal epithelial cells. Elastase decreased viability of BEAS-2B cells, A549 cells, and human tracheal epithelial cells in con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microbiology and biotechnology
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2014